
Using a Master and Slave approach for GPGPU
Computing to Achieve Optimal Scaling in a 3D

Real-Time Simulation

Gregory Gutmann1, Daisuke Inoue2, Akira Kakugo2,3, and Akihiko Konagaya1

1Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
2Faculty of Science, Hokkaido University, Sapporo, Japan

3Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan

Abstract—With the ever increasing computational demand of
scientific research and data analysis, there has been a migration
towards GPU computing. GPU are now the primary source of
compute power in most top supercomputers. But in order to
make use of the power programs must utilize more than a single
GPU. Within this paper we will explain various approaches we
have taken to utilize multiple GPU, and attempt to reach close
to perfect scaling on a multi-step simulation. The result of this is
having developed our simulation to be computed on a master and
slave setup of GPU. Our simulation mentioned is being developed
for the purpose of simulating microtubule dynamics on a gliding
assay.

I. INTRODUCTION

Molecular biology poses many challenging questions and
at times there seems to be no direct way of answering them.
Due to this for many years computer simulations have been
used to reproduce biological phenomenon with the aim of
answering such questions. However, within complex biological
systems the number of acting agents easily reaches into the
millions, which require vast compute resources. With the
recent movement towards the use of general purpose graphics
processing units (GPGPU), which now have in the range of
3000 cores per card, it is possible to run such simulations
efficiently on a local multi-GPU system.

This paper will look at two multi-GPU algorithms, as well
as a single GPU algorithm for a comparison. The first multi-
GPU algorithm takes a conventional approach. By computing
the minor tasks on a single GPU, and distributing the primary
work load to all of the GPUs for further acceleration. The
second method uses a master and slave setup of GPUs, one
master and two slaves. As well as using a two cycle pattern to
enable further concurrency, by overlapping work across update
iterations. We have named this algorithm master assist.

The master assist algorithm is an algorithm to organize and
control execution of other computational algorithms. Where
the computational algorithms are what make up the individual
aspects of the model. Therefore, this paper will focus on
the organization of algorithm exaction and not the individual
computational algorithms.

A. Microtubule Background

A microtubule gliding assay experiment consists of molecu-
lar motors being placed on a glass surface, then microtubules
added on top. Next the experiment is dosed with ATP and
the molecular motors propel the microtubules in various
directions. Our interest in microtubule gliding assay comes
from the research field of bottom-up nano-scale molecular
fabrication, known as molecular robotics[1], [2]. One of the
goals in this research area is to form molecular actuators from
molecular motors and microtubules. To do this we need to
learn more about microtubule dynamics and swarm patterns,
and microtubule gliding assay is a good tool for this purpose.

B. Simulation Background

Our work is creating a real-time 3D live-controlled micro-
tubule gliding assay simulation, along with a graphical user
interface for the setup of initial simulation parameters[3]. On
simulation set up many values can be adjusted such as: micro-
tubule length, speed (energy), simulation space size, various
interaction potentials, custom placement of microtubules and
hardware related setup. Then during the simulations run time
the various interaction algorithms can be enabled and disabled
along with having their parameters adjusted. Some of the
forces involved have been depicted in figure 1. For the purpose
of this paper we will only focus on the algorithm which
computes the Lennard-Jones potential between all microtubule
segments, as seen in equation 1 and figure 2. In our simulation
microtubules are represented by a ball and chain model. Each
microtubule consists of a head segment and a series of body
segments connected by a spring force as seen in equation 2.
d standing for the distance between segments and e standing
for an adjustable equilibrium distance.

f(t) =

a∑
j=1

s ∗

((
2

d− e

)12

−
(

2

d− e

)6
)

(1)

s(t) = (d− e) ∗ c (2)

Proceedings of the 11th IEEE Annual International
Conference on Nano/Micro Engineered and Molecular Systems (NEMS)
Matsushima Bay and Sendai MEMS City, Japan, 17-20 April, 2016

978-1-5090-1947-2/16/$31.00 ©2016 IEEE

Fig. 1: Yellow arrows represent the Lennard-Jones Potential.
Red arrows represent a spring force between segments. Orange
arrow represent the force of motor protein holing up the
microtubules

Fig. 2: Example graph of the Lennard-Jones Potential, behav-
ior changes based on the set parameters

C. Past Optimizations and Distributed Computing Challenges

The main issues for multi-GPU computing in our simulation
are: the separation of rendering and computational tasks, and
the parallelization of the computational tasks.

The former technique allows us to use independent GPU for
rendering and computation, so that each others performance
dose not impact the other. Also, by doing this when looking
at the computational performance it is almost as if it is purely
a numerical simulation with no other bottlenecks.

The later technique is not so simple due to the spatial sort
technique adopted in our simulation; a sort of the microtubule
segments based on location[4]. This turns our update proce-
dure into a multi-step process but, greatly reduces the amount
of computational work that is needed. Changing the L-J
potential algorithm from a O(n2) to a O(n) limiting behavior,
which is vital when simulating into the millions of objects;
however using a multi-step process greatly complicates the
conversion of the program from using a single GPU to multiple
GPU.

This is due to many factors including the following. Data
distribution and collection, which is required for distributed
computing but very limiting as PCI-E speeds often range
between 3-11GB/s in a single direction. A need to maintain
an order of tasks; there are some data dependencies between

tasks as well as limitations on dividing up the work. More
specifically some of the work cannot be easily separated into
smaller segments of work to hide memory transfers. Algorithm
limitations, such as the radix sort that we chose to use which is
only developed to run on a single GPU. However, it is rated as
the fastest GPU key sort, CUB a production-quality library for
CUDA architecture[6]. While doing a single computation on
multiple GPU can be fairly straight forward, the work needed
to be done is rarely ever that simple.

The last challenge is maintaining speeds to simulate in real-
time, as well as enabling live control. In order to maintain
real-time, at our simulation scale, the simulation must be
updating at a rate of about 40 times per second. This gives us
a time budget of 25ms per update. This constraint limits the
number of applicable distributed computing algorithms. For
example using larger workloads to better mask overhead for
better scaling, as seen in part of Domnguez’s paper[7]. Then
to enable live control all of the parallel processes must be able
to communicate or share parameters in some manner.

II. TRADITIONAL APPROACHES

This section will look at the single GPU algorithm and a
basic approach to multi-GPU usage. Also, to better show the
differences between the algorithms in this paper we have taken
images of the Nvidia Visual Profiler results of each. They are
shown below in figure 3, where in each case we are simulating
around 100,000 microtubules made up of about 2,000,000
segments using a square simulation space with side lengths
equal to the diameter of 2,033 segments. We will refer to the
diameter of a segment as 1 unit in this paper. The simulation
space and segment count above, results in a density of 0.5
segments/unit2. In each of the images that we have taken from
the visual profiler we have captured two or more updates to
show how each update connects to the next in time.

A. A look at the single GPU work pattern

In figure 3a we have done visual profiling of the compu-
tational work within our simulation’s single GPU algorithm.
The purple in the image is the radix sort, next in aqua is
the L-J Potential, followed by the segment location movement
function in blue, and lastly an asynchronous memory copy
from the GPU to the host during those. Having two sets of
location data, sorted by segment ID, on the compute GPU
allows the copy of the location data that has just been updated
by the compute GPU to be sent to the host while the compute
GPU creates the next version of the location data. This allows
the program to hide the cost of the memory transfer to the
host. This method is also used in both multi-GPU approaches.
As seen in figure 3a the L-J potential is by far the greatest
work load, which is one of the reasons why it is our focus for
the multi-GPU algorithms.

B. Straight Forward Multi-GPU

Our first approach to use multiple GPU was to take our most
computationally intensive and least data intensive algorithm,
the L-J potential, and only port that over to multi-GPU

computing. The L-J potential calculation runs in the range of
1.2 TFLOP/s, but only requires about 66GB/s of data. We have
given this algorithm the name distributed L-J potential. After
some additional work to organize data transfers, it appeared to
work very well. When comparing figures 3a and 3b they follow
a similar time line, but with figure 3b taking almost exactly
3x less time for the L-J potential. Figure 3b just includes a
little extra data movement time, some copies were able to be
overlapped with other operations though. However the sort,
data reduction, and movement did not benefit from multiple
GPUs. Therefore while the performance scaling of the L-J
Potential is impressive, when looking at the simulation as a
whole it is just an average performance gain.

Often the solution to this problem in multi-GPU programing
is to break up the larger workloads to hide the memory trans-
fers and insure continuous computation[5]. While this would
work with our L-J potential kernel, there would be a small
percent of added work for organizing buffered data between
divisions. But more importantly this method would not hide
the other operations. The CUB radix sort is constrained to
one GPU, as mentioned. Then the movement kernel for our
segments is a data bound operation, with numerous conditions
to be checked for each microtubule segment, meaning requir-
ing a great deal of memory in comparison to computation.
Thus the cost of distributing all the data and recollecting it
for the movement kernel would greatly outweigh the benefit
of using multiple GPU for the computation. To give specific
details, in the movement kernel the global memory bandwidth
is about 400GB/s, whereas the computation is in the range of
90 GFLOPS/s. Very much so a data bound operation. Many
of the challenges listed in section C of the introduction also
apply here.

1) Differences in Rendering Process: The method of data
movement for rendering is also different in our multi-GPU
algorithms. As seen in figure 4, when using the single GPU al-
gorithm the compute time is greater than the rendering process.
However when using our multi-GPU algorithms the computa-
tion has become faster than the basic rendering operations.
Due to this we switched to using DirectX interoperability
with CUDA, to try to further minimize the rendering process
time to better balance it with the CUDA compute time. The
results of reducing the data movement time, by using DirectX
interoperability instead of a parallel memory copy by the CPU,
can be seen in figure 4.

This process works by having each computational update
send a copy of updated data to the host. Then as the host
rendering process reaches the point of updating the DirectX
resources, the host copies the data to the render GPU and
launches a kernel to move the memory into the DirectX
buffers. When doing this the render thread calls cudaSetDe-
vice to switch to the CUDA context to the render GPU. We
have done lengthy testing and it seems having two simulta-
neous threads changing the selected CUDA device is not an
issue. However due to there being an unknown time variation
between computation updates and render updates, a circular
triple buffer was used on the host to synchronize the two

tasks use of the location data. The buffer is set up so the
faster operation follows the slower process around the buffer,
to prevent the processes passing over each other in the buffer.
Also, having three buffers insures there are never any data
collisions even with unknown task completion timings.

III. MASTER AND SLAVE TWO CYCLE APPROACH

Our solution to the issue of incorporating single GPU
algorithms and avoiding excess data movement in a multi-GPU
system, is to isolate operations such as these to a single GPU.
While sending the computationally intensive algorithm, the L-
J potential, to be entirely computed on the two assist GPU.
It is referred to as a two cycle approach because simulation
updates are spread across two computational iterations, to
allow for further concurrency. This algorithm also uses the
same method of hiding GPU to host transfers as mentioned
in the single GPU algorithm; and the same rendering process
mentioned in the first multi-GPU section. The visual profiling
of the algorithm can be seen in figure 3c.

A. Importance of the Master GPU
By designating one GPU to be a master GPU, the primary

source of data distribution and collection. We are able to
do computation that is better suited for a single GPU on
the master GPU, while it conducts the data movement for
distributed computation. This allows us to overlap work that
is limited to a single GPU with work that can be done in a
distributed manner. For example libraries or to work that is
not suited to distributed computation such as algorithms with
very high data requirements.

One of the operations that is done on the master GPU is
the sorting of segments. By using the master GPU to sort the
segments, we are able to create updated position data every
iteration with minimal impact on the performance and zero
impact on the performance from the perspective of the force
calculations on the assist GPU. Previous works have attempted
to minimize the effect of the sort time on performance by only
sorting every kth update[5]. The down side of this is the speed
of particles per iteration must be taken into consideration, to be
sure the particle has not moved out of the cell it was sorted
into before the next location sort is done. By sorting every
iteration, the cells whose segments are sorted into can be set
to the minimum required size for the search area. No buffer is
needed for movement between sorts. This is very beneficial to
performance because increasing the cell size, to have a buffer,
has a squared relation in a 2D sort and a cubed relation in
a 3D sort. Due to these relationships this means potentially
drastically increasing the unnecessary segments found when
looking for neighboring particles or segments.

The second operation that we have used the master GPU
for is the movement kernel. This is because it is purely a
data bound operation as mentioned previously, and would be
detrimental to performance to compute in a distributed manner.

B. Order of Executed Operations
All three methods start off the same. The microtubules are

placed in the manner specified by the user prior to running the

(a) Single GPGPU method. The L-J Potential calculations took about 47.8ms

(b) Distributed L-J potential using 3 GPGPU. Main limitations: single GPU work and the memory movement. The gap in work is caused
by a synchronization to collect the data from each GPU. The L-J Potential calculations took about 15.7ms per GPU

(c) Master assist algorithm using 3 GPGPU. The L-J Potential calculations took about 23.1ms per assist GPU

Fig. 3: Nvidia Visual Profiler images of the three algorithms. Time scales in each are slightly different, as they cant be manually
set

simulation. Then when the user starts the movement initially
no interactions are active by default. The logic of simulation
starts by sorting the segments, running the segment movement
kernel then sending the data to the CPU. When the various
interactions are activated, using the single GPU or distributed
L-J potential algorithms, they occur before the movement
kernel.

The master assist algorithm also applies the interaction
based changes before the movement kernel in the code;
however, the interactions applied are from the perspective of
the movement of the previous frame. This means that for the
master and assist algorithm the application of the interactions
are flipped from the perspective of the movement of the
segments. The interactions are computed, segments moved,
then the interactions are applied. This change has a minute
amplifying affect for the Lennard-Jones Potential which was
adjusted for.

C. Memory Management

On each assist GPU there are two sets of data, one active
and one buffer. Each data sets consist of segment locations,
sorted by grid location. As well as data which marks the start
and end segment of each cell in the sorted list. The GPUs
alternate memory sets with each update.

There are a couple reasons for using buffers. One is to over-
lap memory transfers and kernel execution. In the assist GPU’s
case this allows the L-J potential to run almost constantly with
little idle time between updates. By simultaneously computing
the L-J potential on one set of data, while transferring and
receiving data on the other data set. The gap, runtime differ-
ence, for the master and slave workloads changes based on
microtubule density. At very low densities the master GPU’s
work is the limiting factor, then at very high densities the L-J
potential calculations are the limiting factor. At the densities
of interest they are about even, which is why we chose the
separation of tasks that we did. The work done by each group
could be adjusted on a case by case basis.

The next reason is so that the memory transfers over the
PCI-E bus can be more spread out, versus being bunched
together when computations have finished. This is important
because the PCI-E is limited to only one transfer at a time in a
given direction. Therefore it is beneficial to keep the memory
bus more active to avoid a backup or stall of computation
due to memory movement. As a side note while profiling, we
found the PCI-E transfers rates often fluctuate between about
3.5GB/s and 11GB/s. This creates occasional performance
fluctuations between some updates. The reason for this is
currently unknown to us.

IV. PERFORMANCE

As seen in figure 4 below using multiple GPU can be
beneficial in either case, but a rework of the computational
work flow was needed to reach closer to the theoretical scal-
ing performance for our simulation. The difference between
using a single GPU and three GPU with the distributed L-J
potential algorithm resulted in performance gains averaging

1.7x faster. But when using our master assist algorithm there
is an average performance gain of 2.9x compared to the single
GPU algorithm. This is a difference of 1.7x between the master
assist and the distributed L-J potential. For the master assist
algorithm, the performance on the two assist GPU is able
to maintain an almost constant 1.2 TFLOP/s per card across
update frames.

Fig. 4: Performance comparison to the three GPGPU ap-
proaches listed above. As well as the rendering thread time
which, is executed independently. Density for this was fixed
to 0.5 segments/unit

In table I the effect of density can be seen, by the number
of segments which can compute the L-J potential, on all their
neighboring segments, per second. Then below the table in
equation 1, best fit cases can be seen to which estimate the
performance for a given density x. Each segment is searching
a 15 unit2 area. For example, at a 0.5 segment/unit density this
means about 135 distance checks. Then for this test the L-J
potential cutoff distance was set to 7 units, which results in an
average of 76 segments computed against[?]. Both search area
and the L-J potential cutoff are adjustable. Below the table the
cases for understanding density’s effect on the master assist
algorithm is also listed. A 0.3 segment/unit2 density is roughly
when the master GPU is the limiting factor.

TABLE I: Performance at various densities

Average Density Segments/sec Computing L-J potential
0.3 segments/unit 133,210,000
0.5 segments/unit 101,233,000
0.7 segments/unit 78,173,000

f(x) =

{
≈ 130, 000, 000, if x < 0.3

111x2 − 249x+ 197, if x > 0.3
(3)

Next in figure 5 the performance effects of various densities

can be seen for all three algorithms. The distributed L-
J potential has a bit of overhead in data movement, and
the performance of this algorithm in relation to the single
GPU algorithm doesn’t show as much of a gain until higher
densities. This is because the larger the distributed work load
is the greater the gains when distributing the work to more
resources.

The master assist algorithm also has a minimum required
compute load as seen there is a plateau from 0.15 to 0.3
segments/unit2. This is the range at which the work on the
master GPU is greater than the compute work on the assist
GPU. By isolating management tasks and basic movement to
the master GPU, the L-J computation is completely hidden
at low densities. Then at the higher densities the reverse is
true and the other operations are hidden. This means at the
mid-range of densities the two groups of work are equal
and overlap well. Currently the master GPU work primarily
consists of memory movement; and even though it is saturated
with memory transfers in our current model, there is still
headroom for added computation on the master GPU.

Fig. 5: Algorithm’s behavior with varying densities. Yellow
region is the area of interest for our microtubule simulation

V. FUTURE WORK

At this time there are still a few unknown artifacts within
our master assist algorithm. Such as our issues faced when
enabling the Tesla Compute Cluster (TCC) mode on our
compute GPUs. When enabling it the L-J Potential kernel often
took up to 10x as long to compute. Also, different manners of
implicit and explicit synchronizations caused this performance
drop at times. For example differences between synchro-
nization statements in the code, synchronizations by CUDA
based on memory dependency or PCI-E transfer queues, and
synchronizations based on CUDA events. We found little to
explain drastic changes between the similar operations. But if
these can be solved TCC will enable faster memory movement.

Also, as previously mentioned there is still computational
headroom on the master GPU. This will allow for the planned
addition of more complex segment to segment interactions
within microtubule chains without affecting the current per-
formance results.

As for future technologies, Nvidia’s upcoming release of
NVLink will greatly aid in multi-GPU computation by offering
faster GPU-GPU transfers. A greater memory transfer speed
in our algorithm would mean the master GPU’s limiting
factor may not be memory movement. This would reduce
the performance plateau caused by the master GPU at lower
densities, or allow for adding additional memory movement
for additional distributed work.

VI. CONCLUSION

We have found that when only porting the most intensive
task within a simulation to multi-GPU computing the gains can
be very small, even if that tasks performance scales perfectly
across all GPU used. Within multi-step programs often a
redesign is needed, which takes into consideration all of the
limiting factors of each process, in order to reach closer to the
expected gains from adding additional hardware. Our master
assist algorithm has done this for our problem by constraining
single GPU algorithms and memory managment to one GPU,
and using the remaining GPU for distributed computation. By
the use of our master assist algorithm we have achieved ideal
scaling, about a 2.9x gain in simulation speed with 3 GPU.
This has allowed for simulating 2.4 million particles within
our time budget of 25ms.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scien-
tific Research on Innovation Areas Molecular Robotics (No.
24104004) of The Ministry of Education, Culture, Sports,
Science, and Technology, Japan.

REFERENCES

[1] Murata, S., Konagaya, A., Kobayashi, S., Saito, H., & Hagiya, M.
(2013). Molecular robotics: A new paradigm for artifacts. New Generation
Computing, 31(1), 27-45.

[2] Hagiya, M., Konagaya, A., Kobayashi, S., Saito, H., & Murata, S. (2014).
Molecular robots with sensors and intelligence. Accounts of chemical
research, 47(6), 1681-1690.

[3] Gutmann, G., Inoue, D., Kakugo, A., & Konagaya, A. (2014). Real-
Time 3D Microtubule Gliding Simulation. In Life System Modeling and
Simulation (pp. 13-22). Springer Berlin Heidelberg.

[4] Green, S. (2010). Particle simulation using cuda. NVIDIA whitepaper.
[5] Rustico, E., Bilotta, G., Herault, A., Del Negro, C., & Gallo, G. (2014).

Advances in multi-GPU smoothed particle hydrodynamics simulations.
Parallel and Distributed Systems, IEEE Transactions on, 25(1), 43-52.

[6] Merrill, Duane. ”CUB Documentation” CUB: Main Page. NVIDIA
CORPORATION, 2011.

[7] Domnguez, J. M., Crespo, A. J., Valdez-Balderas, D., Rogers, B. D., &
Gmez-Gesteira, M. (2013). New multi-GPU implementation for smoothed
particle hydrodynamics on heterogeneous clusters. Computer Physics
Communications, 184(8), 1848-1860.

